domingo, 24 de mayo de 2015

El reto 2015, 5.5

Un vendedor anuncia una rebaja del 20% en sus artículos, pero poco escrupuloso aumentó previamente los precios originales en un 20%. ¿Que tanto cambió el precio respecto al original?

Solución 2015, 5.4

Sea /$n/$ el número de miembros de la família Quintos sin contar al papá. Por otro lado, sea /$x/$ la suma de las edades de la família Quintos sin contar al papá.
Así:
- El promedio de las edades sin contar al papá es de 14 se traduce como: /$\frac{x}{n}=14/$
- El promedio de las edades de toda la família es de 18 años: /$\frac{x+38}{n+1}=18/$

Solución:
- De la primera ecuación, se despeja /$x/$ quedando /$x=14n/$
- Se sustituye el valor anterior en la segunda ecuación quedando /$\frac{14n+38}{n+1}=18/$
- Despejamos /$n/$: \begin{align*} 14n+38 &= 18(n+1)\\ 14n+38 &= 18n+18\\ 20 &= 4n\\ n &= \frac{20}{4} \\ n &= 5 \end{align*} Como /$n/$ es el número de personas en la familia sin contar al padre. Entonces la familia tiene un total de seis personas siendo esta la solución.

viernes, 22 de mayo de 2015

Tareas 2015, semana 34

Hola a todas.

Esta semana las tareas son:

TODOS LOS GRUPOS La entrega del proyecto final se acerca, si tienen dudas qué hacer, es mejor que las hagan esta próxima semana. Así mismo, las que estásn haciendo anuario/revista, antes de imprimirla la próxima semana deberán llevar la muestra en memoria USB para comprobar que no tenga errores antes de la impresión.

Primer grado: Continúen trayendo fotografías en sus memorias, piensen en varias fotografías que puedan unir para tener solo una (un fotomontaje)

Segundo A, B, C: Investiguen qué es un arreglo de datos y como se implementa en C/C++

Segundo D, E, F: Investiguen qué es una función (en programación) y como se declara en C/C++

lunes, 18 de mayo de 2015

El reto 2015, 5.4

La edad promedio de los miembros de la familia Quintos es de 18 años. Si sabemos que el papá tiene 38 años y que el promedio de las edades de los miembros de la familia sin contarlo a él es de 14 años. ¿cuántos miembros tiene la familia Quintos?

domingo, 17 de mayo de 2015

Solución 2015, 5.3

1. Cada dado tiene seis caras, al ser todos de colores distintos, el resultado de cada uno de ellos cuenta por separado. Por tanto el total de posibles resultados es de 6*6*6 = 216

Nota: Si los dados fueran todos iguales, el resultado 1,2,3 es el mismo que 3,2,1 debido a que los dados son indistinguibles y no importa cual cara digamos primero. En total existen 3*2*1=6 posibles formas de acomodar tres números, así que el total de posibles resultados sería (6*6*6)/(3*2*1) = 216/6 = 36


2. Para ganar un jugador debe de completar siete puntos como suma de las caras resultantes de los tres dados, he aquí la cuenta de cuales son los resultados. Recuerden que como nuestros dados son distintos, no es lo mismo 1,1,5 (rojo=1, verde=1, azul=5) que 5,1,1 (rojo=5, verde=1, azul=1).
      La estrategia es bastante simple, fijen uno de los tres dados y cuenten cuanto falta para sumar siete. En este caso, fijemos el puntaje del rojo y contemos cuantos puntos faltan para llegar a siete, noten que en caso de haber más de una opción, mientra el segundo número aumenta en una unidad, el tercero disminuye una unidad.

a) Dado rojo=1 (faltan seis puntos)
Solo hay dos opciones 1,1,5 y 1,5,1

b) Dado rojo=2 (faltan cinco puntos)
Las opciones son 2,1,4, 2,2,3, 2,3,2 y 2,4,1

c) Dado rojo=3 (faltan cuatro puntos)
Las opciones son 3,1,3, 3,2,2 y 3,3,1

d) Dado rojo=4 (faltan tres puntos)
Las opcioes son 4,1,2 y 4,2,1

e) Dado rojo=5 (faltan dos puntos)
La única opción es 5,1,1

Así en total existen 12 posibles formas de ganar

Nota: Si todos los dados fueran idénticos, las soluciones únicamente son las siguientes: 1,1,5, 1,2,4, 1,3,3, 2,2,3, es decir, solo hay cuatro formas de ganar. Notese que cada una de estas cuatro formas aparece tres veces en la lista anterior, lo que cambia es el orden de aparición (y por tanto los colores) de cada número.


Nota cultural: Regresando a los juegos de las Vegas. Noten que si todos los dados fueran iguales, tendrían cuatro formas de ganar de un total de 36 posibles resultados, es decir 4/36 = 11% de posibilidades de ganar. En cambio, si los dados son distintos, la posibilidad de ganar es doce de un total de 216 posibles resultados, es decir 12/216 = 5% de posibilidades de ganar.
_____En algunos otros juegos, no solo de casino, como la ruleta, poker, pronósticos, melate, entre otros, también es posible aplicar esto. Así el jugador apuesta creyendo que sus posibilidades de ganar aumentan (por ejemplo cuando le dicen que imprimen dos o más veces su boleto) cuando en realidad son las mismas o peores

viernes, 15 de mayo de 2015

Tareas 2015, semana 33

Hola a todas.

Esta semana las tareas son:

Primero A, B, C: Dibujen en sus libretas el diagrama de flujo de cómo sumar dos números y luego mostrar el resultado.

Primero D, E, F: La próxima semana no olviden traer fotografías en sus memorias para continuar con photoshop. Además, dibujen el diagrama de flujo de como obtener el máximo común divisor de dos números.

Segundo grado: Investiguen qué es un arreglo de datos (en programación) y como se declaran en C/C++.

lunes, 11 de mayo de 2015

El reto 2015, 5.3

Algunos juegos de azahar jugados en las Vegas consisten en alcanzar de manera exacta o adivinar un número. Imaginemos que tenemos tres dados iguales, solo que de distinto color (rojo, verde y azul), el juego consiste en lanzar los dados y si entre los tres suman siete entonces el jugador gana todo el dinero en la mesa, en caso contrario el jugador pierde lo que ha apostado.

1. ¿Cuántas tiradas distintas existen?
2. ¿De cuantas maneras un jugador puede ganar?

Ejemplo:
Un caso es rojo=5, verde=1, azul=1
Otro es rojo=1, verde=5, azul=1

Una combinación que no gana es: rojo=5, verde=5, azul=5