domingo, 18 de enero de 2015

Solución 2015, 3.5

Para resolver este ejercicio lo que necesitan es saber las dimensiones de la caja, vamos a averiguarlas:

El primer día se comió todos los chocolates del piso de arriba, /$77/$ en total. Es decir, la base del cubo es un rectángulo con área /$77/$, por tanto tenemos que buscar qué rectángulo de base y altura entera tiene esa área, no es difícil darse cuenta que la única posibilidad es el de /$7 \times 11/$.

El segundo día se comió 55, que eran los que quedaban en el lado derecho. Es lo mismo, ahora estamos calculando el área de la cara derecha, como comparte una arista con la parte superior, tienen un lado común, es decir, /$7/$ u /$11/$, obviamente es once y el otro lado mide /$5/$ (/$5\times11=55/$). Por tanto la altura de la caja es igual a /$6/$ (recordemos que el primer día le quitamos un piso de altura.

Ya sabemos que la caja original tiene las siguientes medidas: /$11 \times 7 \times 6/$ y revisando cuidadosamente los enunciados podremos darnos cuenta que lo que hicimos fue quitar una unidad de altura (un piso) una unidad de base (la cara derecha) y uno de profundidad (los de adelante). Por tanto, al final nos queda una caja con /$10 \times 6 \times 5 = 300/$ chocolates.

No hay comentarios:

Publicar un comentario